Fsb dram ratio что это

Fsb dram ratio что это Fsb dram ratio что это 6664 дней общения с читателями ОГЛАВЛЕНИЕ: Вкладка «Memory» имеет всего две группы, первая из которых —

Теория разгона

Говоря о разгоне системы, как правило, имеют в виду разгон памяти и процессора (хотя можно разгонять и видеокарты). Под разгоном при этом понимают принудительное увеличение тактовой частоты процессора и памяти (то есть использование частоты выше номинальной), в результате которого компьютер начинает работать более производительно. Например, если вы приобрели компьютер с процессором Intel Pentium 4 1,6 ГГц и оперативной памятью типа DDR266, то путем нехитрых манипуляций его можно заставить работать так же, как, скажем, компьютер с процессором Intel Pentium 4 2,4 ГГц и памятью DDR333. О том, как это сделать, мы и попытаемся рассказать. eye.gif

Однако прежде всего разберемся с тем, что такое тактовая частота процессора и какие еще частоты бывают в компьютере. Частота процессора, выражаемая в гигагерцах (ГГц), определяет промежуток времени, называемый тактом, в течение которого процессор выполняет определенное количество инструкций. Например, если процессор имеет тактовую частоту 1 ГГц, то это означает, что время одного такта составляет 1 нс (одна миллиардная доля секунды). Если другой процессор имеет тактовую частоту 2 ГГц, то для него время одного такта в два раза меньше, то есть 0,5 нс. Следовательно, одно и то же количество инструкций второй процессор может выполнить в два раза быстрее (если принять, что оба процессора за один такт выполняют одинаковое количество инструкций). Из этого нетрудно сделать вывод о том, что производительность второго процессора в два раза больше. Впрочем, это не совсем так. Давайте задумаемся над тем, что именно следует называть производительностью процессора. С точки зрения пользователя, производительность процессора — это время выполнения им определенного набора команд, последовательность которых и образует программу. Чем оно меньше, тем лучше, то есть тем производительнее процессор. Тогда под производительностью можно понимать количество команд, выполняемых за такт, умноженное на тактовую частоту процессора:

Производительность = (Кол-во команд за такт)х(Тактовая частота)

Количество команд, выполняемых за такт, зависит как от выполняемой программы, так и от архитектуры процессора. На уровне процессора одна команда программы преобразуется в несколько машинных инструкций или элементарных команд, причем эффективность такого преобразования зависит и от архитектуры процессора (с каким набором машинных команд способен работать процессор), и от оптимизации кода под конкретную архитектуру процессора. Кроме того, в зависимости от архитектуры процессора элементарные команды могут исполняться параллельно.

Поэтому некорректно было бы сравнивать производительность процессоров, имеющих различную архитектуру, основываясь только на тактовой частоте процессоров. Вот почему при одной и той же тактовой частоте одни приложения более эффективно могут выполняться на процессорах AMD, а другие — на процессорах Intel.

Однако если рассматривать одно и то же семейство процессоров, то есть процессоры с одинаковой архитектурой, то сравнивать их производительность исходя из частоты процессора будет вполне корректно.

Разгон процессора основан именно на росте производительности за счет увеличения тактовой частоты процессора.

Кроме тактовой частоты процессора в компьютерах различают также частоту системной шины, частоту FSB и частоту шины памяти.

Частота FSB, точнее, частота шины FSB (Front Side Bus) — это основная частота в компьютере, по которой синхронизируются все остальные частоты. В современных компьютерах на базе процессора Intel Pentium 4 эта частота может принимать значения 100 или 133 МГц. Длительность одного такта на этой шине определяется прямоугольными импульсами напряжения, причем время каждого нового такта определяется по положительному (то есть возрастающему) фронту тактирующего импульса (отсюда и название Front Side).

Системная шина, или шина процессора, связывает процессор с так называемым северным мостом чипсета. Не вникая в подробности, отметим лишь, что по системной шине процессор обменивается данными со всеми остальными устройствами. В компьютерах на базе процессора Intel Pentium 4 системная шина работает на частоте 400 или 533 МГц. Как уже отмечалось, частоты всех шин синхронизируются с частотой FSB. В случае процессора Intel Pentium 4 частота системной шины ровно в четыре раза больше частоты FSB. Поэтому если частота FSB составляет 100 МГц, то частота системной шины 400 МГц, если же частота FSB равна 133 МГц, то частота системной шины соответственно 533 МГц. Кроме частоты системная шина характеризуется также пропускной способностью, то есть максимальным количеством данных, которые можно передать по шине за одну секунду. Процессорная шина является 64-битной, а это значит, что за один такт по шине можно передать 64 бита, или 8 байт. Соответственно для 400-мегагерцевой шины пропускная способность составит 3,2 Гбайт/с (400 МГц×8 байт), а для 533-мегагерцевой шины — 4,2 Гбайт/с.

Частота шины памяти определяет скорость обмена данными между памятью и контроллером памяти (он, кстати, как раз и располагается в северном мосте чипсета). Эта частота зависит от типа памяти и синхронизована с частотой FSB. Для наиболее распространенных типов DDR-памяти передача данных происходит два раза за такт, то есть по положительному и отрицательному фронтам тактирующего импульса, поэтому эффективная частота работы памяти в два раза больше тактирующей частоты. Для памяти DDR200, DDR266, DDR333 и DDR400 эффективная частота, определяющая скорость передачи данных, составляет 200, 266, 333 и 400 МГц соответственно. Частота тактирующих импульсов при этом — 100, 133, 166 и 200 МГц соответственно. Частота шины памяти также синхронизована с частотой FSB, и, например, при частоте FSB, равной 133 МГц, частота памяти связана с частотой FSB, как показано в табл. 1.

Кроме рассмотренных частоты шины памяти и процессорной шины, тактовая частота процессора также синхронизуется с частотой FSB и всегда кратна этой частоте. Коэффициент связи между тактовой частотой процессора и частотой FSB называется коэффициентом умножения. К примеру, если частота FSB составляет 133 МГц, то при коэффициенте умножения 18х процессор Pentium 4 будет работать на частоте 2,4 ГГц. Для процессора Pentium 4 2 ГГц при частоте FSB 100 МГц коэффициент умножения равен уже 20х.

Казалось бы, самый простой способ увеличить тактовую (внутреннюю) частоту процессора  — это поднять коэффициент умножения. К примеру, процессор Pentium 4 1,6 ГГц c номинальным коэффициентом умножения, равным 16х (частота FSB 100 МГц), можно превратить в процессор Pentium 4 2,4 ГГц, установив коэффициент умножения равным 24x. Способ действительно очень простой и надежный, но, увы… Во всех современных процессорах (включая семейство процессоров AMD Athlon) возможность изменения коэффициента умножения заблокирована. И если у процессоров AMD путем хитроумных уловок такое ограничение можно снять (информацию о том, как это сделать, можно найти в Интернете), то в отношении процессоров Pentium 4 это принципиально невозможно.

Однако эти обстоятельства — не повод для уныния. Давайте вспомним, что тактовая частота процессора синхронизована с частотой FSB, поэтому если повышать частоту FSB, то автоматически будет возрастать и тактовая частота процессора, благо производители материнских плат (за исключением плат производства Intel) позволяют изменять частоту FSB. Например, если номинальная тактовая частота процессора Pentium 4 составляет 2,4 ГГц при частоте FSB 133 МГц (коэффициент умножения 18x), то при увеличении частоты FSB до 180 МГц тактовая частота процессора увеличивается до 3,24 ГГц (табл. 2).

Говоря о разгоне системы, следует особо подчеркнуть, что только процессор разогнать нельзя, то есть, разгоняя процессор путем увеличения частоты FSB, мы увеличиваем и частоту памяти, поскольку память синхронизирована с работой процессора (см. табл. 2). Это очень важное обстоятельство, о котором порой забывают. Дело в том, что заранее неизвестно, кто первым «умрет» — память или процессор. Более того, как правило, именно память является «тормозом» разгона, не позволяя переходить на более высокие частоты FSB. Так, если процессор способен выдержать разгон до частоты FSB 180 МГц, а память не может работать на частотах FSB более 150 МГц, то разгон будет ограничен именно частотой FSB в 150 МГц. Поэтому очень многое зависит от качества модуля используемой памяти.

Для того чтобы преодолеть ограниченные возможности по разгону памяти, существует два способа. Прежде всего, за счет настроек BIOS можно изменить отношение между частотой FSB и частотой памяти так, чтобы частота шины памяти была как можно меньше. Учитывая, что при разгоне системы частота FSB и частота шины памяти увеличиваются синхронно и в соответствии с заданным между ними отношением, можно создать условия для разгона в большей степени процессора и в меньшей степени памяти. Допустим, система рассчитана на частоту FSB 133 МГц и на использование памяти DDR266, то есть частота в 266 МГц является номинальной для памяти. Тогда если настройками BIOS установить коэффициент связи между частотой FSB и частотой памяти равным 1,5, то при частоте FSB в 133 МГц частота памяти составит 200 МГц, то есть меньше номинальной. При разгоне частоты FSB до 177 МГц процессор будет разогнан, а память станет работать на своей номинальной частоте 266 МГц. Такой способ искусственного «загрубления» памяти используется довольно часто, но и он имеет свои недостатки. Дело в том, что при «загрублении» памяти может возникнуть ситуация, когда при разгоне процессора максимальная достигнутая частота FSB остановится на такой отметке, при которой память еще не достигнет своего номинального значения.

Предположим, что в вашем распоряжении имеется процессор Intel Pentium 4 2,4 B ГГц (коэффициент умножения 18х), имеющий номинальную частоту FSB в 133 МГц и память DDR266. Установив отношение между частотой памяти и частотой FSB равным 1,5, можно, к примеру, разогнать частоту FSB до 160 МГц. В этом случае тактовая частота процессора составит 160 МГц×18 = 2,88 ГГц (что, в общем, не так уж плохо), но вот память при этом будет работать на частоте 160 МГц×1,5 = 240 МГц, то есть меньше того значения, на которое рассчитана. Остается выяснить, что же лучше: поднять тактовую частоту процессора и уменьшить частоту памяти или, в ущерб высоким тактовым частотам, попытаться разогнать одновременно процессор и память.

Описанный выше пример мы привели не случайно. Дело в том, что производительность всей системы определяется не только частотой процессора, но и частотой памяти. Реальный разгон — это поиск золотой середины, когда путем экспериментов приходится определять условия, при которых достигается максимальный рост производительности всей системы в целом.

Другой популярный способ заключается в том, чтобы использовать более быстродействующую память, чем указано в спецификации на материнскую плату. Например, для плат, поддерживающих память DDR266/200, можно использовать память DDR333 или даже DDR400. Сочетая этот способ с первым, можно достичь высоких значений по разгону FSB, не упираясь при этом в возможности памяти.

Говоря о памяти, мы до сих пор рассматривали только ее частоту. Однако DDR-память имеет и другие важные характеристики, влияющие на ее производительность. Это так называемые тайминги памяти, изменением которых во многих случаях можно добиться выигрыша в производительности; подробнее об этом можно прочитать в статье «Память на любой вкус», опубликованной в этом номере журнала.

Зачем добиваться максимальной производительности оперативной памяти

Чем больше МГц, тем выше пропускная способность чтения и записи, больше операций выполняется за одну секунду. Архивация файлов с помощью WinRAR происходит на 40% быстрее. В этом обзоре наглядно показано, как влияет разгон Kingston HyperX FURY на скорость обработки информации.

Чтобы сэкономить себе время на поиски оптимального тайминга, можно воспользоваться программой «Drum Calculator for ryzen». ОЗУ, работающая с минимальным таймингом и максимальной частой, больше нагружает процессор, что отражается на количестве FPS в играх. Пример использования калькулятора и удачного разгона здесь.

А здесь можно посмотреть детальное и полномасштабное тестирование изменения частот и таймингов с приростом 6–14 FPS.

Загрузить драйверы
Оперативная память (RAM)

Действия по обновлению драйверов Random Access Memory (RAM) вручную:

Эти стандартные драйверы Random Access Memory (RAM) можно найти в %%os%% или загрузить из обновления Windows®. Встроенные драйверы будут поддерживать основные функциональные возможности вашего Random Access Memory (RAM), но, как правило, не более расширенные функции. Наши инструкции по обновлению драйверов Windows содержат все необходимые шаги.

Как автоматически обновлять драйверы Random Access Memory (RAM):

Рекомендация: Если у вас нет опыта обновления драйверов устройства Оперативная память (RAM) вручную, мы настоятельно рекомендуем скачать DriverDoc [DriverDoc — Продукт от Solvusoft], который обновит ваши драйверы Random Access Memory (RAM). Данная утилита Windows выполняет автоматическое скачивание, установку и обновление текущих драйверов Random Access Memory (RAM), предотвращая установку неправильного драйвера для вашей ОС.

Благодаря доступу к базе, содержащей более 2 150 000 драйверов, DriverDoc будет выполнять обновление не только драйверов Оперативная память (RAM), но и остальных драйверов на вашем ПК.

McAfee SECURE sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams

Установить необязательные продукты — DriverDoc (Solvusoft) | Лицензия | Политика защиты личных сведений | Условия | Удаление

icon-question.png

RAM memory Drivers Download

  • Description: Scan your system for out-of-date and missing drivers
  • File Version: 8.5
  • File Size: 2.33M
  • Supported OS: Windows 10, Windows 8.1, Windows 7, Windows Vista, Windows XP
  • Driver Version: 7.0.1.1011
  • Release Date: 2008-11-07
  • File Size: 8.27K
  • Supported OS: Windows 10 32 & 64bit, Windows 8.1 32 & 64bit, Windows 7 32 & 64bit, Windows Vista 32 & 64bit, Windows XP

Please enter verification code, then click the download button.

not_found.png
  • Driver Version: 6.0.6000.16399
  • Release Date: 2006-06-21
  • File Size: 1.16M
  • Supported OS: Windows 10 32 bit, Windows 8.1 32bit, Windows 7 32bit, Windows Vista 32bit, Windows XP 32bit

Please enter verification code, then click the download button.

not_found.png

Совместимость

Оперативная память работает на частоте самого медленного модуля. Если установлено несколько планок разных производителей или серий, может возникнуть конфликт совместимости, тогда операционная система не запустится.

Чтобы выжать из железа максимум, надо устанавливать модули памяти из одной серии. В этом обзоре показана разница между двухканальным и одноканальным режимом работы ОЗУ.

В двухканальном режиме необходимо устанавливать планку через один слот. Тут продемонстрирована комплексная работа планок оперативки из одной серии.

Fsb dram ratio что это

Как разогнать системную плату P35 Platinum? (1)

Меню BIOS системной платы P35 Platinum. Все функции, связанные с производительностью, за исключением peripherals (периферия), system time (время), power management(управление электропинанием), находятся в “Cell Menu”. Пользователи, желающие настроить частоту процессора, памяти, или других устройств (например, шины графической карты и южного моста) могут воспользоваться этим меню.

p35_overlock_18.gif

Помните, что если вы не знакомы с насторойками BIOS, для быстрого завершения всех настроек рекомендуется выполнить пункт “Load Optimized Defaults” (загрузить оптимальные настройки), что обеспечит нормальную работу системы. Перед выполнением разгона мы рекомендуем пользователям вначале выполнить этот пункт, а затем производить тонкие настройки.

p35_overlock_19.gif

Правила разгона

Не все материнские платы поддерживают разгон. Китайские «ноунеймы» в особенности любят блокировать возможность увеличить производительность вручную, оставляя только  автоматическое поднятие частот.

Turbo Boost — это всегда разгон в щадящем режиме, протестированный производителем и максимально безопасный. Чтобы получить производительности на 5–10% больше, потребуется поработать ручками. Контроллер памяти процессора не даст разогнать оперативную память выше собственных параметров частоты.

Спасительная кнопка отката

Вывести из строя оперативную память, меняя частоту — невозможно. Со слишком высокими параметрами ПК просто не запустится. Если после нескольких загрузок все еще появляется «синий экран смерти», необходимо сбросить настройки на заводские параметры. Делается это с помощью перемычки «CLR CMOS», на некоторых материнках он подписан, как «JBAT».

Смотрите также

  • Множитель процессора

Помощь в компе

Разогнал i5 6400 по шине и сохранил надстройку. Долгое время всё было отлично, но не теперь в бусте не включается с первого раза и пишет «the system failed to boot several times before you may press f2 or del enter setup to reconfigure your system».

Если выкл. и вкл. системник, то все грузится и работает без сбоев. Ошибка именно с первой загрузки компа в разгоне, в стоке такой ошибке нет.

Частоты понижал, напряжение стоит на автомате,

Тип компьютера Компьютер с ACPI на базе x64

Операционная система Microsoft Windows 10 Professional

Пакет обновления ОС —

Internet Explorer 11.2363.14393.0

DirectX DirectX 12.0

Тип ЦП QuadCore Intel Core i5-6400, 3100 MHz (31 x 100)

Системная плата ASRock Z170A-X1 (3 PCI-E x1, 2 PCI-E x16, 4 DDR4 DIMM, Audio, Video, Gigabit LAN)

Чипсет системной платы Intel Sunrise Point Z170, Intel Skylake-S

Системная память 8139 МБ (DDR4 SDRAM)

Тип BIOS AMI (12/21/2017)

Видеоадаптер NVIDIA GeForce GTX 1050 Ti (4 ГБ)

Видеоадаптер NVIDIA GeForce GTX 1050 Ti (4 ГБ)

Видеоадаптер NVIDIA GeForce GTX 1050 Ti (4 ГБ)

Видеоадаптер NVIDIA GeForce GTX 1050 Ti (4 ГБ)

3D-акселератор nVIDIA GeForce GTX 1050 Ti

Показания AIDA в разгоне

Тип ЦП QuadCore Intel Core i5-6400

Псевдоним ЦП Skylake-S

Engineering Sample Нет

Имя ЦП CPUID Intel(R) Core(TM) i5-6400 CPU @ 2.70GHz

Версия CPUID 000506E3h

CPU VID 0.7699 V

Частота ЦП 799.8 MHz (исходное: 2700 MHz)

Множитель ЦП 8x

CPU FSB 100.0 MHz (исходное: 100 MHz)

Частота северного моста 799.8 MHz

System Agent Clock 799.8 MHz

Шина памяти 1066.4 MHz

Соотношение DRAM:FSB 32:3

Кэш L1 кода 32 КБ per core

Кэш L1 данных 32 КБ per core

Кэш L2 256 КБ per core (On-Die, ECC, Full-Speed)

Кэш L3 6 МБ (On-Die, ECC, Full-Speed)

Свойства системной платы

Системная плата ASRock Z170A-X1 (3 PCI-E x1, 2 PCI-E x16, 4 DDR4 DIMM, Audio, Video, Gigabit LAN)

Свойства набора микросхем (чипсета)

Чипсет системной платы Intel Sunrise Point Z170, Intel Skylake-S

Тайминги памяти 14-14-14-35 (CL-RCD-RP-RAS)

Command Rate (CR) 2T

Дата BIOS системы 12/21/2017

Дата BIOS видеоадаптера 10/13/16

DMI версия BIOS P7.30

Свойства графического процессора

Видеоадаптер nVIDIA GeForce GTX 1050 Ti

Кодовое название ГП GP107 (PCI Express 3.0 x16 10DE / 1C82, Rev A1)

Разгон серверной ОЗУ

Рассмотрим автонастройки частоты на примере материнской платы x79 LGA2011 с процессором Intel Xeon E5-2689. Серверная оперативная память — 2 планки Samsung по 16 Gb с частотой 1333 MHz, работающие в двухканальном режиме, тайминг — 9-9-9-24. 

Путь к разгону лежит через BIOS, вкладка «Chipset», раздел «Northbridge» — параметры северного моста.

Выбираем настройку «DDR Speed». Параметр «Auto» меняем на «Force DDDR3 1600». Сохраняем, перезагружаемся. Запускаем тест в программе AIDA 64, выбрав в меню «Сервис» задачу «Тест кэша и памяти», затем жмем «Start Benchmark».

В синтетическом тесте скорость чтения, записи и копирования увеличилась почти на 20%. «Memory Bus» поднялся до 800 MHz, тайминг — 11-11-11-28.

Возвращаемся в BIOS, ставим «Force DDDR3 1866».

При таких настройках прирост производительности достигает 39%. Процессор разогнался автоматически с 2600 MHz до 3292,5 MHz, прирост CPU составил 26%, параметры тайминга — 12-12-12-32.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: