Производная интеграла

Введите функцию, для которой необходимо вычислить интеграл После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение

Последовательная замена переменной и интегрирование по частям

Пример 1

Найти неопределенный интеграл
slozhnye_integraly_clip_image002.gif

Подынтегральная функция представляет собой арктангенс, под которым находится кубический корень. Первая же мысль, которая приходит в голову – избавиться бы от этого корня. Данный вопрос решается путем замены переменной, сама техника замены специфична, и она подробно рассмотрена на уроке Интегралы от иррациональных функций. Проведем замену:
slozhnye_integraly_clip_image004.gif

После такой замены у нас получится вполне симпатичная вещь: slozhnye_integraly_clip_image006.gif

Осталось выяснить, во что превратится slozhnye_integraly_clip_image008.gif. Навешиваем дифференциалы на обе части нашей замены:

slozhnye_integraly_clip_image010.gif

И само собой раскрываем дифференциалы:
slozhnye_integraly_clip_image012.gif

На чистовике решение кратко записывается примерно так:
slozhnye_integraly_clip_image014.gif

Проведем замену:
slozhnye_integraly_clip_image016.gif

slozhnye_integraly_clip_image018.gif

В результате замены получен знакомый тип интеграла, который интегрируется по частям:
slozhnye_integraly_clip_image020.gif

slozhnye_integraly_clip_image022.gif

(1) Выносим slozhnye_integraly_clip_image024.gif за скобки. К оставшемуся интегралу применяем прием, который рассмотрен в первых примерах урока статьи Интегрирование некоторых дробей.

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала.

(4) Берём оставшиеся интегралы. Обратите внимание, что в логарифме можно использовать скобки, а не модуль, так как slozhnye_integraly_clip_image026.gif.

(5) Проводим обратную замену, выразив из прямой замены slozhnye_integraly_clip_image004_0000.gif «тэ»: slozhnye_integraly_clip_image028.gif

Студенты-мазохисты могут продифференцировать ответ и получить исходную подынтегральную функцию, как только что это сделал я. Нет-нет, я-то в правильном смысле выполнил проверку =)

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения:

Пример 2

Найти неопределенный интеграл
slozhnye_integraly_clip_image030.gif

Пример 3

Найти неопределенный интеграл
slozhnye_integraly_clip_image032.gif

Пример 4

Найти неопределенный интеграл
slozhnye_integraly_clip_image034.gif

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений, думаю, очевидно. Почему я подобрал однотипные примеры? Часто встречаются в своем амплуа. Чаще, пожалуй, только что-нибудь вроде slozhnye_integraly_clip_image036.gif.

Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Введите функцию, для которой необходимо вычислить интеграл

После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение введённого вами интеграла.

Найдем решение неопределенного интеграла от функции f(x)
(первообразную функции).

Примеры

С применением степени
(квадрат и куб) и дроби

С применением синуса и косинуса

Гиберболические синус и косинус

Гиберболические тангенс и котангенс

Гиберболические арксинус и арккосинус

Гиберболические арктангенс и арккотангенс

Правила ввода выражений и функций

© Контрольная работа РУ – калькуляторы онлайн

Производная неопределенного интеграла. Первая основная теорема математического анализа
Сейчас мы обсудим удивительную взаимосвязь, которая существует между интегрированием и дифференцированием. Связь между этими двумя действиями аналогична в какой-то мере связи между операциями возведения в квадрат и извлечения квадратного корня. Если мы возведем положительное число в квадрат и затем возьмем положительное значение квадратного корня, то в результате опять получим исходное число. Аналогичным образом, если мы возьмем неопределенный интеграл от некоторой непрерывной функции f, мы получим новую функцию, производная которой даст нам опять исходную функцию f. Например, если f(x) = x 2 , то неопределенный интеграл A(x) определяется следующим образом
$A(x)=intlimits_c^x f(t) dt = intlimits_c^x t^2 dt = frac <3>- frac<3>,$
где c – константа интегрирования. Дифференцируя эту функцию, мы получаем A'(x) = x 2 = f(x). Этот пример – хорошая иллюстрация важной теоремы, лежащей в основе математического анализа. Она формулируется следующим образом:

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Почему вы не знаете, как решать интегралы

А для чего нужны интегралы? Попробуйте сами себе ответить на этот вопрос.

Объясняя тему интегралов, учителя перечисляют малополезные школьным умам области применения. Среди них:

  • вычисление площади фигуры.
  • вычисление массы тела с неравномерной плотностью.
  • определение пройденного пути при движении с непостоянной скоростью.
  • и др.

Связать все эти процессы не всегда получается, поэтому многие ученики путаются, даже при наличии всех базовых знаний для понимания интеграла.

Главная причина незнания – отсутствие понимания практической значимости интегралов.

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

Примеры

Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Объясняем понятие «Интеграл»

Процесс нахождения производной называется дифференцированием, а нахождение первообразной – интегрированием.

Интеграл математическим языком – это первообразная функции (то, что было до производной) + константа «C».

Интеграл простыми словами – это площадь криволинейной фигуры. Неопределенный интеграл – вся площадь. Определенный интеграл – площадь в заданном участке.

Интеграл записывается так:

opisanie_integrala.jpg

Каждая подынтегральная функция умножается на компонент «dx». Он показывает, по какой переменной осуществляется интегрирование. «dx» – это приращение аргумента. Вместо X может быть любой другой аргумент, например t (время).

Неопределённый интеграл

Неопределенный интеграл не имеет границ интегрирования.

Для решения неопределённых интегралов достаточно найти первообразную подынтегральной функции и прибавить к ней «C».

Определённый интеграл

В определенном интеграле на знаке интегрирования пишут ограничения «a» и «b». Они указаны на оси X в графике ниже.

062819_1013_2.png

Точки A и B на оси X – есть ограничение зоны определения интеграла

Для вычисления определенного интеграла необходимо найти первообразную, подставить в неё значения «a» и «b» и найти разность. В математике это называется формулой Ньютона-Лейбница:

062819_1013_3.png

Таблица интегралов для студентов (основные формулы)

062819_1013_4.png

Скачайте формулы интегралов, они вам еще пригодятся

Как вычислять интеграл правильно

Существует несколько простейших операций для преобразования интегралов. Вот основные из них:

Вынесение константы из-под знака интеграла

062819_1013_5.png

Разложение интеграла суммы на сумму интегралов

062819_1013_6.png

Если поменять местами a и b, знак изменится

062819_1013_7.png

Можно разбить интеграл на промежутки следующим образом

062819_1013_8.jpg

Это простейшие свойства, на основе которых потом будут формулироваться более сложные теоремы и методы исчисления.

Примеры вычисления интегралов

Решение неопределенного интеграла

062819_1013_9.png

Решение определенного интеграла

062819_1013_12.jpg

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: